Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical absorption of polarized light in InAs/GaSb quantum wells

Identifieur interne : 000193 ( Russie/Analysis ); précédent : 000192; suivant : 000194

Optical absorption of polarized light in InAs/GaSb quantum wells

Auteurs : RBID : Pascal:09-0062564

Descripteurs français

English descriptors

Abstract

Using an eight-band k .p model Hamiltonian with the Burt-Foreman envelope function theory, we have investigated the optical absorption of both linearly and circularly polarized light, as well as related phenomena in InAs/GaSb broken-gap quantum wells grown along the [001] direction, with emphasis on the effects of electron-hole hybridization and the various symmetry-breaking mechanisms such as structural inversion asymmetry, bulk inversion asymmetry and interface Hamiltonian. The optical matrix elements exhibit unusual angular dependence in close connection with the spin-flip transitions which are originally forbidden. The spin split of the 2e subband results in two profound absorption peaks for the 1hh-2e transition for both linearly polarized and circularly polarized light. A large lateral optical anisotropy appears in the absorption coefficient of linearly polarized light, which can reach almost 100% with a reducing thickness of the quantum well. For the absorption of circularly polarized light, we found a large enhancement of electron spin polarization in the upper 2e subband, which was generally considered as forbidden if the polarization is along the direction perpendicular to the plane-of-light incidence.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0062564

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical absorption of polarized light in InAs/GaSb quantum wells</title>
<author>
<name sortKey="Zakharova, A" uniqKey="Zakharova A">A. Zakharova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34</s1>
<s2>Moscow 117218</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Semenikhin, I" uniqKey="Semenikhin I">I. Semenikhin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34</s1>
<s2>Moscow 117218</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chao, K A" uniqKey="Chao K">K. A. Chao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Lund University, Sölvegatan 14A</s1>
<s2>22362 Lund</s2>
<s3>SWE</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>22362 Lund</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Chemistry and Biology, Linköping University</s1>
<s2>58183 Linköping</s2>
<s3>SWE</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>58183 Linköping</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0062564</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0062564 INIST</idno>
<idno type="RBID">Pascal:09-0062564</idno>
<idno type="wicri:Area/Main/Corpus">005D04</idno>
<idno type="wicri:Area/Main/Repository">006133</idno>
<idno type="wicri:Area/Russie/Extraction">000193</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Asymmetry</term>
<term>Circular polarization</term>
<term>Electron hole pair</term>
<term>Energy gap</term>
<term>Envelope function</term>
<term>Gallium antimonides</term>
<term>Hamiltonians</term>
<term>Hybridization</term>
<term>Indium arsenides</term>
<term>Linear polarization</term>
<term>Matrix elements</term>
<term>Quantum wells</term>
<term>Spin polarization</term>
<term>Symmetry breaking</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Spectre absorption</term>
<term>Paire électron trou</term>
<term>Polarisation spin</term>
<term>Hamiltonien</term>
<term>Fonction enveloppe</term>
<term>Polarisation rectiligne</term>
<term>Polarisation circulaire</term>
<term>Bande interdite</term>
<term>Hybridation</term>
<term>Brisure symétrie</term>
<term>Asymétrie</term>
<term>Elément matriciel</term>
<term>Arséniure d'indium</term>
<term>Antimoniure de gallium</term>
<term>Puits quantique</term>
<term>InAs</term>
<term>GaSb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using an eight-band k .p model Hamiltonian with the Burt-Foreman envelope function theory, we have investigated the optical absorption of both linearly and circularly polarized light, as well as related phenomena in InAs/GaSb broken-gap quantum wells grown along the [001] direction, with emphasis on the effects of electron-hole hybridization and the various symmetry-breaking mechanisms such as structural inversion asymmetry, bulk inversion asymmetry and interface Hamiltonian. The optical matrix elements exhibit unusual angular dependence in close connection with the spin-flip transitions which are originally forbidden. The spin split of the 2e subband results in two profound absorption peaks for the 1hh-2e transition for both linearly polarized and circularly polarized light. A large lateral optical anisotropy appears in the absorption coefficient of linearly polarized light, which can reach almost 100% with a reducing thickness of the quantum well. For the absorption of circularly polarized light, we found a large enhancement of electron spin polarization in the upper 2e subband, which was generally considered as forbidden if the polarization is along the direction perpendicular to the plane-of-light incidence.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical absorption of polarized light in InAs/GaSb quantum wells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZAKHAROVA (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SEMENIKHIN (I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHAO (K. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34</s1>
<s2>Moscow 117218</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Lund University, Sölvegatan 14A</s1>
<s2>22362 Lund</s2>
<s3>SWE</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Chemistry and Biology, Linköping University</s1>
<s2>58183 Linköping</s2>
<s3>SWE</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>125044.1-125044.8</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000184627550460</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0062564</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using an eight-band k .p model Hamiltonian with the Burt-Foreman envelope function theory, we have investigated the optical absorption of both linearly and circularly polarized light, as well as related phenomena in InAs/GaSb broken-gap quantum wells grown along the [001] direction, with emphasis on the effects of electron-hole hybridization and the various symmetry-breaking mechanisms such as structural inversion asymmetry, bulk inversion asymmetry and interface Hamiltonian. The optical matrix elements exhibit unusual angular dependence in close connection with the spin-flip transitions which are originally forbidden. The spin split of the 2e subband results in two profound absorption peaks for the 1hh-2e transition for both linearly polarized and circularly polarized light. A large lateral optical anisotropy appears in the absorption coefficient of linearly polarized light, which can reach almost 100% with a reducing thickness of the quantum well. For the absorption of circularly polarized light, we found a large enhancement of electron spin polarization in the upper 2e subband, which was generally considered as forbidden if the polarization is along the direction perpendicular to the plane-of-light incidence.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Paire électron trou</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electron hole pair</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Par electrón hueco</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polarisation spin</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Spin polarization</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Polarización spin</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Hamiltonien</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Hamiltonians</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Fonction enveloppe</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Envelope function</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Función envolviente</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Polarisation rectiligne</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Linear polarization</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Polarisation circulaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Circular polarization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Hybridation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hybridization</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Brisure symétrie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Symmetry breaking</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Asymétrie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Asymmetry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Elément matriciel</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Matrix elements</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Antimoniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium antimonides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>GaSb</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>047</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000193 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000193 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0062564
   |texte=   Optical absorption of polarized light in InAs/GaSb quantum wells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024